|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Objectjsky.coords.Cotr
public class Cotr
Based on C routintes by Francois Ochsenbein [ESO-IPG].
The static methods provided in this class all deal with coordinate transformations. All spherical coordinates are assumed to be expressed in DEGREES. No function is traced. The parameter mnemonics are:
Constructor Summary | |
---|---|
Cotr()
|
Method Summary | |
---|---|
static void |
tr_Euler(double[] euler_angles,
double[][] R)
Compute the rotation matrix from Euler angles (z, theta, zeta). |
static void |
tr_oo(double[] o,
double[] o2,
double[][] R)
Rotate polar coordinates using an R rotation matrix (old to new frame) and unit vectors. |
static void |
tr_oo1(double[] o,
double[] o2,
double[][] R)
Rotate polar coordinates, using the inversed R matrix (new to old frame). |
static void |
tr_oR(double[] o,
double[][] R)
Creates the rotation matrix R[3][3]. |
static void |
tr_ou(double[] o,
double[] u)
Transformation from polar coordinates to Unit vector. |
static void |
tr_RR(double[][] A,
double[][] B,
double[][] R)
Product of orthogonal matrices B = R * A. |
static void |
tr_RR1(double[][] A,
double[][] B,
double[][] R)
Product of orthogonal matrices B = R^{-1} * A. |
static void |
tr_uo(double[] u,
double[] o)
Computes angles from direction cosines. |
static void |
tr_uR(double[] u,
double[][] R)
Creates the rotation matrix. |
static void |
tr_uu(double[] u1,
double[] u2,
double[][] R)
Rotates the unit vector u1 to u2, as u_2 = R * u_1 (old to new frame) |
static void |
tr_uu1(double[] u1,
double[] u2,
double[][] R)
Rotates the unit vector u1 to u2, as u_2 = R^{-1} * u_1 (new to old frame). |
Methods inherited from class java.lang.Object |
---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
Constructor Detail |
---|
public Cotr()
Method Detail |
---|
public static void tr_Euler(double[] euler_angles, double[][] R)
euler_angles
- IN: Euler angles (z, theta, zeta)R
- OUT: rotation matrixpublic static void tr_oo(double[] o, double[] o2, double[][] R)
o
- IN: Original angleso2
- OUT: rotated anglesR
- IN: Rotation matrixpublic static void tr_oo1(double[] o, double[] o2, double[][] R)
o
- IN: Original angleso2
- OUT: rotated anglesR
- IN: Rotation matrixpublic static void tr_oR(double[] o, double[][] R)
The resulting R matrix can then be used to get the components of a vector v in the local frame.
o
- IN: original anglesR
- OUT: rotation matrixpublic static void tr_ou(double[] o, double[] u)
o
- IN: angles ra + dec in degreesu
- OUT: dir cosinespublic static void tr_uo(double[] u, double[] o)
u
- IN: Dir cosineso
- OUT: Angles ra + dec in degreespublic static void tr_uR(double[] u, double[][] R)
For the poles,(|z|=1), the rotation axis is assumed be the y axis, i.e. the right ascension is assumed to be 0.
u
- IN: Original directionR
- OUT: Rotation matrixpublic static void tr_uu(double[] u1, double[] u2, double[][] R)
u1
- IN: Unit vectoru2
- OUT: Resulting unit vector after rotationR
- IN: rotation matrix (e.g. created by tr_oR)public static void tr_uu1(double[] u1, double[] u2, double[][] R)
u1
- IN: Unit vectoru2
- OUT: Resulting unit vector after rotationR
- IN: rotation matrix (e.g. created by tr_oR)public static void tr_RR(double[][] A, double[][] B, double[][] R)
A
- IN: First MatrixB
- OUT: Result MatrixR
- IN: Rotation Matrixpublic static void tr_RR1(double[][] A, double[][] B, double[][] R)
A
- IN: First MatrixB
- OUT: Result MatrixR
- IN: Rotation Matrix
|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |